What is AI? What Marketers Need to Know

By esantiago@hubspot.com (Erica Santiago)

Free Guide: How to Use AI in Content Marketing [Download Now]

Artificial intelligence is getting a lot of traction in the marketing world. According to Statista, 80% of industry experts integrate some form of AI into their online marketing activities.

However, if you’re like me and are unfamiliar with AI beyond what you’ve seen in science fiction stories like I, Robot or Black Mirror — you’re probably wondering what AI is and how to use it in marketing.

Is AI really what it looks like in the movies? This article will explore the definition of AI, the different types of AI, and how AI can improve marketing processes.

What is artificial intelligence?

How does AI work?

What are the four types of artificial intelligence?

How Marketers Can Use AI

The Pros and Cons of AI

The Future of AI in Marketing

So now you know what AI is, let’s explore how it functions.

How does AI work?

AI combines large sets of data with intelligent, repetitive processing algorithms to learn from patterns and features within the data being analyzed. The AI continuously processes and learns from the data.

Within each round of data processing, the AI system tests and measures its own performance to gain additional expertise.

AI can run through thousands, even millions, of tasks repeatedly — improving its performance in a short amount of time. However, there are multiple kinds of AI, each with its capabilities and limitations.

What are the four types of artificial intelligence?

The four types of artificial intelligence are reactive, limited memory, theory of mind, and self-awareness.

Reactive

A reactive AI can only use its intelligence to react and reply to the world around it. It can’t store memory; therefore, it can’t rely on past experiences to inform real-time decision-making or problem-solving.

Reactive machines can only complete a finite amount of specialized tasks. Though this may sound like a drawback, it has its perks. A reactive AI will react the same way to the same stimuli every time — making it reliable and trustworthy.

One of the most famous examples of reactive AI is Deep Blue, a supercomputer created by IMB in the 1990s that won a chess match against chess champion Garry Kasparov. Deep Blue could identify the chess board pieces and how each piece could move based on the game’s rules.

However, the AI could not try to anticipate its opponent’s next move, nor could it think of ways to put its piece in a better position.

Limited Memory

Limited memory AI stores previous data and predictions and uses it for decision-making — looking into past data to predict the future. Limited memory AI is when a machine learning model is continuously trained to analyze and use new data.

Limited-memory AI consists of six steps to follow.

  1. Create the training …read more

    Source:: HubSpot Blog

          

    Aaron
    Author: Aaron

Related Articles